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ABSTRACT: A study of the tensile behavior of ultra-
high-molecular-weight polyethylene over a range of strain
rates showed that its strain rate sensitivity was a function
of the strain. This was related to a flow rule developed for
this material in a previous study on compressive behavior.
This flow rule is an adaptation of that of Hill, in which the
anisotropy coefficients are power-law functions of the
extension ratios. It is used in conjunction with an Eyring
process. The observed rate dependence of the tensile behav-
ior conformed with that obtained with the power-law flow
rule and could be used to derive a value of the power-law
coefficient. Independent observations were made of the

relationship between the axial and transverse strains in ten-
sile specimens with inhomogeneous strain fields. A consti-
tutive model was developed that incorporates the new flow
rule and was implemented in a finite element analysis.
When this analysis was used to model the inhomogeneous
tensile specimens, it gave predictions of the axial and trans-
verse strain that were consistent with the experiment when
the power-law coefficient was the same value as that
derived from the study of the rate dependence. VC 2011 Wiley
Periodicals, Inc. J Appl Polym Sci 121: 2936–2944, 2011
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INTRODUCTION

Ultra-high-molecular-weight polyethylene (UHMWPE)
continues to be of importance as a structural material.
As a result, its constitutive behavior has been studied
extensively and represented by complex models.1–3 In
service, the material can be subjected to multiaxial
strain fields, and it is desirable that this should be
reflected in any program of experimental verification.
In a previous study,4 we investigated its constitutive
behavior when it was subjected to compressive strain
in both the uniaxial and nonuniaxial modes. A consti-
tutive theory was developed that gave an adequate
representation of the experimental data. We found that
an unconventional flow rule, featuring strain-induced
anisotropy, was essential to the realistic functioning of
the constitutive model, particularly in the representa-
tion of the nonuniaxial (plane strain) results. The par-
ticular form adopted for anisotropy was a power-law
dependence on the principal extension ratios. In this
study, we extended this work to tensile behavior.

The purpose of this study was to explore whether a
flow rule similar to that required for compression is

necessary in the case of tension. The plane strain
experiments that proved crucial in the interpretation
of compressive behavior were found to be not practi-
cally possible in tension. However, we found that the
issue of the flow rule could be successfully addressed
via a program of experiments that included both uni-
form and nonuniform tension, together with a
detailed study of the dependence of the strain rate
sensitivity on strain. We concluded that a flow rule of
the type derived for compressive behavior continued
to give a performance for tensile stretching far supe-
rior to that of the conventional Lèvy-Mises rule.

EXPERIMENTAL

In all tests, UHMWPE (grade GUR1050) was used; it
was manufactured by Hoechst and supplied by
Orthoplastics (Lancashire, United Kingdom) in the
form of compression-molded blocks. The molar
mass of this grade of polymer has been estimated in
the range 5.5–6.0 � 106 g/mol with intrinsic viscos-
ity measurements.5 The crystallinity of the sample
was determined at a value of 40.96% as quantified
with modulated differential scanning calorimetry
with experimental details, as specified previously.4

Uniaxial tests were carried out in tension with an
Instron testing machine (model 5568, Instron Ltd.
High Wycombe UK) operating at room temperature.
To determine the stress–strain behavior under uni-
form strain conditions, the tensile specimen geometry
shown in Figure 1(a) was used; it was based on a
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type I ASTM D 638 standard. The strains were meas-
ured with the aid of a video extensometer (MessPhy-
sik ME46NG, Messphysik Materials TestingGMBH
Furstenfeld Austria), which sensed the separation of
two parallel pen lines 50 mm apart on the 75-mm par-
allel gauge length. Tests were carried out at constant
speeds; this resulted in approximately constant rates
of the engineering strain in the range 0.005–0.08 s�1.
The strain fields remained uniform throughout the
tests, with no signs of necking. Nonuniform strain
fields were also explored with tensile tests of the ge-
ometry shown in Figure 1(b). A single testing speed
was used and corresponded to an initial overall strain
rate of 0.015 s�1. Deformation fields in the form of
arrays of dots printed on the specimens were cap-
tured with a Sony Handycam 6.1 MP digital video
camera operating at 25 frames/s.

CONSTITUTIVE MODELING

An essential element of the theory is a series combi-
nation of an elastic element and an Eyring process.
To form the model, this combination is placed in
parallel with a hyperelastic element; the series com-
bination arm of the model is assigned the super-

script X, and the hyperelastic arm of the model is
assigned the superscript Y. To allocate the strain
between the elastic and plastic elements in the com-
bination arm, we split the deformation gradient (F)
multiplicatively into elastic and plastic components
(Fe and Fp, respectively):

F ¼ FeFp (1)

Our method conformed to that classified by Figiel
and Buckley,6 as approach II, case 20. Here, we
assumed that all of the rigid body rotation was
included in the plastic deformation. Fp was thus
split into pure deformation (Vp) and rigid body rota-
tion (R; via the use of the Cauchy–Green strain mea-
sure) to give the following:

Fp ¼ VpR (2)

Fe was symmetric, with Fe ¼ VeX, the elastic strain in
the combination arm, so that eq. (2) became

F ¼ VeXVpR (3)

An incremental approach was used, with strain
rate assumed to be constant during each time incre-
ment. The current plastic stretch (Vp) was related to
the plastic strain at the end of the previous time in-
crement (V

p
0 ) and the increment of plastic strain

(DVp) developed during the current increment, by
the following relation:

F ¼ VeXDVpV
p
0 R (4)

VeX and DVp are collinear, with DVp related
directly to the derivative _V

p
via the time increment.

DVp results from the scalar plastic strain rate (ėp)
generated by the Eyring equation

_ep ¼ A exp Vp �r
� �

sinh Vssð Þ (5)

where A, Vp, and Vs are material constants, with the
latter two being proportional to pressure and shear
activation volumes, respectively (following, e.g.,
Buckley and Jones7 or Spathis and Kontou8); r is the
mean stress, and s is the driving stress and is
defined later, in eq. (9). We defined ėp in terms of
the plastic strain rate tensor (Lp):

_ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
Lp: Lp

r
(6)

which is itself defined in terms of Lp by

Lp ¼ _VpVp�1 (7)

To define the components of the plastic strain
rate, we adapted the Hill criterion9 for anisotropic
yielding for the arbitrary axes 1, 2, and 3:

Figure 1 Tensile specimens: (a) 5 mm thick and (b) with
nonuniform strain field and 1 mm thick. Dimensions are
in millimeters.
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L
p
11 ¼ _ep H r11 � r22ð Þ þ G r11 � r33ð Þ½ �

�
3s

L
p
22 ¼ _ep F r22 � r33ð Þ þH r22 � r11ð Þ½ �

�
3s

L
p
33 ¼ _ep G r33 � r11ð Þ þ F r33 � r22ð Þ½ �

�
3s

L
p
23 ¼ _epLr23

�
3s

L
p
13 ¼ _epMr13

�
3s

L
p
12 ¼ _epNr12

�
3s

(8)

where r is the stress and F, G, H, L, M, and N are
anisotropy parameters. Equation (8) represents the
incompressible plastic flow. From the definition in
eq. (6) of ėp, it follows that s is given by

s ¼ 1

3

"
1

3

n
½Hðr11 � r22Þ þ Gðr11 � r33Þ�2 þ ½Fðr22 � r33Þ

þHðr22�r11Þ�2 þ ½Gðr33�r11ÞþFðr33�r22Þ�2 þ 2½L2r2
23þM2r2

23þN2r2
12�
#1=2

(9)

When F ¼ G ¼ H ¼ L ¼ M ¼ N ¼ 1, eq. (8) is
equivalent to the Lèvy–Mises flow rule. When the
anisotropy is strain induced, the anisotropy parame-
ters are initially unity. The principal planes of
orthotropy are subsequently determined by the
strains. It has been concluded4 that the total strain,
rather than the elastic strain, provides the most
effective model; hence, the parameters F, G, H, L,
M, and N are functions of the total strain (VeXVp).
The principal directions of orthotropy at each point
are, thus, the eigenvectors of VeXVp associated with
the principal extension ratios (kI, kII, and kIII). In the
axis set 10, 20, and 30 coinciding with these principal
axes, we defined the anisotropy parameters (F0, G0,
and H0) using a power-law model as done
previously:4

F0 ¼ km
I

G0 ¼ km
II

H0 ¼ km
III

(10)

where the exponent m is a material parameter. The
shear terms (L0, M0, and N0) were derived by trans-
formation of the appropriate stress and strain fields
into a state of pure shear:

L0 ¼ 1

2
G0 þH0ð Þ

M0 ¼ 1

2
F0 þH0ð Þ

N0 ¼ 1

2
F0 þ G0ð Þ

(11)

The anisotropy parameters in any other axis set
could be derived from those defined in eqs. (10) and
(11) by the appropriate fourth-order transforma-
tion.10 A two-dimensional plane stress approach was
adopted. In the 10–20 plane, eq. (8) becomes

L
p
1010 ¼ _ep G0 þH0ð Þr1010 �H0r2020½ �

�
3s

L
p
2020 ¼ _ep F0 þH0ð Þr2020 �H0r1010½ �

�
3s

L
p
1020 ¼ _ep F0 þ G0½ �r1020

�
6s

(12)

For an axis set 1y–2y at angle y to the 10–20 axes, the
equations equivalent to those in eq. (12) were obtained
by introduction of the coefficients Ih, Jh and Kh:

Ih ¼ G0 þH0ð Þ cos4 h� 2H0 sin2 h cos2 h

þ F0 þH0ð Þ sin4 hþ 2 F0 þ G0ð Þ sin2 h cos2 h

Jh ¼ F0 þH0ð Þ cos4 h� 2H0 sin2 h cos2 h

þ G0 þH0ð Þ sin4 hþ 2 F0 þ G0ð Þ sin2 h cos2 h

Kh ¼ F0 þ 2H0 þ G0ð Þ sin2 h cos2 h�H0 sin4 hþ cos4 h
� �

� 2 F0 þ G0ð Þ sin2 h cos2 h (13)

so that the analogue of (12) in the rotated axis set was

L
p

1h1h ¼ _ep Ihr1h1h � Khr2h2h

� ��
3s

L
p

2h2h ¼ _ep Jhr2h2h � Khr1h1h

� ��
3s

L
p

1h2h ¼ _ep Ih þ Jh � 2Kh
� �

r1h2h

�
3s

(14)

The elastic element in the combination arm was
assumed to be a single-term Ogden model with
exponent nX. The stresses were defined by the elastic
extension ratios, which were the eigenvalues of VeX,
denoted by kIV, kV, and kVI, defined in the axis set
IV–V–VI. In this two-dimensional analysis, the VI
axis coincided with the 3 and 30 axes. Because the
Ogden model includes the assumption of incompres-
sibility, kVI ¼ 1/kIVkV, and the principal stresses in
the plane are given by the following:

rIV ¼ CX knX

IV � kIVkVð ÞnX
� �

rV ¼ CX knX

V � kIVkVð ÞnX
� � (15)

where CX is a material constant.
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The values of VeX and DVp in eq. (4) were derived
via an iterative process to impose the condition that
the elastic stress and that in the Eyring process were
equal, whereas the strains in the two elements were
related to the total strain by eq. (4). At each iteration,
stresses were generated with eq. (15) to drive the
Eyring process via eqs. (9)–(14). The values of the
plastic and elastic strain components were adjusted
until the stresses in the two processes, having been
transformed onto a common axis set via the use of
eqs. (13) and (14), were sufficiently close. The result-
ing true stress was then transformed to global direc-
tions 1–2 to give the stress tensor RX. Finally, the
plastic strain tensor (Vp) at the end of the time incre-
ment was the symmetric part of Fp with

Fp ¼ DVpV
p
0 R ¼ VpR0 (16)

where, in general, the rigid body rotation (R0) is
through a different angle differs from R.

The principal stresses in the hyperelastic arm
were defined with an Ogden model with exponent
nY. The strains in the hyperelastic arm were identical
to the total strain (VeXVp) corresponding to principal
extension ratios kI, kII, and kIII, to give principal
stresses as follows:

rI ¼ CY knY

I � kIkIIð ÞnY
� �

rII ¼ CY knY

II � kIkIIð ÞnY
� � (17)

where CY is a material constant.
When transformed to global directions, they

yielded the stress tensor RY. The total stress (R) is
then given by

R ¼ RX þ RY (18)

This analysis was programmed as a UMAT sub-
routine in the finite element package ABAQUS 6.8
(Simulia Providence RI).

STRAIN RATE DEPENDENCE OF STRESS

The strong nonlinearity of the Eyring process gave
rise to yielding behavior when the rate of strain
applied to the material became equal to the Eyring
plastic strain rate.11 The yield stresses predicted by
the Eyring model were strain rate dependent, with
an approximately linear relationship between the
logarithm of the strain rate and the yield stress.
When the flow rule discussed here was included in
the analysis, the gradient of the linear relationship,
the strain rate sensitivity, was predicted to be
dependent on strain.

Here, we explore this effect for uniaxial condi-
tions. The 1–2–3, 10–20–30, and I–II–III axis sets coin-
cided and set r11 ¼ r and all other stress compo-

nents to zero. The first equation of eq. (12) gives for
the plastic strain rate along I:

_kIp

kIp
¼

ffiffiffi
2
p

_ep (19)

With eq. (10), s [eq. (9)] becomes

s ¼
ffiffiffi
2
p

3
rk�m=2

I (20)

We then used eq. (5). In the customary way,11 we
assumed a large argument in the hyperbolic sine
function so that it could be approximated by an
exponential:

_ep ¼
1

2
A exp Vp �rþ Vss

� �
(21)

With the knowledge that for uniaxial conditions,
r ¼ r/3 and with eqs. (19) and (20), this may be
re-expressed as

r ¼ 3

Vp þ
ffiffiffi
2
p

Vsk
�m=2
I

 !
ln

_kIp

kIp

 !
� ln

Affiffiffi
2
p
� �" #

(22)

which shows a linear relationship between the stress
and logarithmic plastic strain rate, with a gradient
that depends on the strain. This relation may be
used to analyze experimental data when it is
assumed that the experimental strain rate can be
equated with the plastic strain rate, that is, at the
yield point. It may also be useful when this is only
approximately the case, as shown later.

RESULTS AND ANALYSIS

A typical experimental stress–strain curve at an
intermediate strain rate of 0.018 s�1 is shown in
Figure 2, showing as salient features the initial linear
response, followed by yieldlike behavior, and finally,
strain hardening. In quantitative terms, curves such
as these depend on the rate of strain. The results of
an analysis of the strain rate dependence for five
rates in the range 0.005–0.08 s�1 are summarized in
Figure 3. Here, stress is plotted as a function of the
logarithm of strain rate, in a manner suggested by
eq. (22), for a number of fixed strains. The stresses
were approximated quite well by the linear function
of logarithmic strain rate, and there was a clear
trend of increasing gradient with increasing strain.
The values of strain plotted were well beyond the
yield strain, and so we were confident that the elas-
tic strain rate was very small in comparison with the
plastic strain rate. The total applied strain rate, being
the sum of the elastic and plastic components, could
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then be equated with the plastic strain rate, and we
used eq. (22) to analyze the results.

According to eq. (22) the gradient (g) of the stress–
logarithm of the strain rate plot is given by

g ¼ 3

Vp þ
ffiffiffi
2
p

Vsk
�m=2
I

(23)

To interpret the observed strain dependence of g
in terms of eq. (23), we made use of the observation
for this material that Vp ¼ 0.13Vs.

12 This was based
on the relationship between the observed tensile and
compressive uniaxial stress–strain behavior. The
values of g from Figure 3 are plotted against strain
in Figure 4, together with the following function:

g ¼ 3

Vs 0:13þ
ffiffiffi
2
p

k�m=2
I

	 
 (24)

for various combinations of Vs and m. The slope of g
in Figure 4 is dominated by the value of m, with

changes in Vs resulting in vertical shifting. It was
clear that a value of m � 5 gave a good representa-
tion of the observed strain dependence of g. The
values of Vs corresponding to the m values used
to calculate the fitted lines in Figure 4 are given in
Table I.

This argument presupposed that Vs was constant
for any given m and that it was the flow rule, via
the factor k�m=2

I in eq. (24), that caused the strain
rate sensitivity to depend on the strain. Another pos-
sibility is that Vs itself depends on the strain. Addi-
tional experimental observations are necessary to
separate the two possible sources of strain depend-
ence. In compressive studies, plane strain experi-
ments were used to make more explicit observations
of the effects of the flow rule.4 Although this type of
experiment has not proven to be practically feasible
in tension, an alternative in the form of tensile tests
using the specimen geometry of Figure 1(b) proved
useful. The effect of the nonuniform stress field is
that the regions of the specimen under low stress
imposed lateral restraints on the more highly
stressed regions of the specimen and affected the lat-
eral contraction in a way that depended on the flow
rule and the exponent m. The effect was quantified
with finite element modeling.

The theory outlined previously under the Consti-
tutive Modeling section was implemented within the
ABAQUS 6.8 commercial code. The finite element
mesh of a quarter of the specimen of the type shown
in Figure 1(b) is shown in Figure 5, where the lower
horizontal and left-hand vertical boundaries are
symmetry boundaries. In Figure 6, we show an
image of a specimen, displaying the pattern of dots
printed on it to aid strain analysis. We characterized
the specimen deformation by measuring two per-
pendicular mean strains (es): the average transverse
strain along the horizontal symmetry axis at the
specimen center (e1) and the average strain on the

Figure 2 Tensile stress–strain curve at strain rate
0.018 s�1.

Figure 3 Strain rate dependence at four levels of strain.
Figure 4 Fits to strain rate dependence for various power-
law exponents.
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vertical symmetry axis between two dots either side
of the horizontal symmetry axis (e2), as illustrated in
Figure 6. These quantities are defined in terms of
the initial point separation (L) and the separation (l)
after deformation as follows:

�e ¼ ln ‘=Lð Þ (25)

The equivalent model predictions were derived
from appropriate nodal displacements, and compari-
son was made via the strain ratio (R), where

R ¼ �
�e1

�e2
(26)

The finite element analysis was run for a number
of values of the power-law exponent m. For each

value of m, the value of Vs was that required to gen-
erate the values of g plotted in Figure 4, whereas, as
noted previously, Vp ¼ 0.13Vs. Other model para-
meters were chosen so that realistic stress–strain
curves were generated. Examples of these curves for
the strain rate 0.018 s�1 are shown in Figure 7, and
the parameter values are listed in Table I. The
parameter A was fixed such that the magnitude of
the predicted yield stress corresponding to an abrupt
change in the slope of the curve at a small strain
corresponded to a realistic stress–strain curve; this
completed the definition of the Eyring process. The
product CXnX was determined from the observed
initial elastic response. The Ogden exponent nX is
defined as nX ¼ 2m, so, as established previously,4

the overall response of the model in plane strain
was similar to the response of the power-law flow

TABLE I
Material Parameters

m Vs (MPa�1) Vp (MPa�1) A (s�1) CX (MPa) nX CY (MPa) nY

0 1.5 0.195 3.2 � 10�10 272 2 7.0 2
1 1.7 0.221 1.3 � 10�11 272 2 3.7 2
2 1.9 0.247 1.3 � 10�11 136 4 3.7 2
3 2.1 0.273 1.4 � 10�12 90.7 6 1.0 2
4 2.4 0.312 1.4 � 10�12 68 8 1.0 2
5 2.7 0.362 1.9 � 10�13 54 10 0.0 2

Figure 5 Finite element mesh for the quarter model of
the tensile specimen of Figure 1(b).

Figure 6 Image of the specimen showing the mean strain
locations.
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rule. The parallel Ogden model in the hyperelastic
arm was assumed to be Gaussian in nature, with
nY ¼ 2. Finally, the constant CY was determined
such that the postyield stress response exhibited the
appropriate degree of strain hardening. Each value
of m was associated with a unique set of parameters,
which are listed in Table I.

When modeling the uniaxial tension with the flow
rule with m > 0, the plastic strain rate along the ten-
sile stretching axis decreases as the strain increases;
this is clear from an inspection of eqs. (10) and (12).
This leads to an increase in stress with deformation
postyield. As a result, this model can show strain-
hardening behavior without the action of the net-
work in the hyperelastic arm; the series Eyring/
Ogden combination arm can exhibit strain hardening
by itself. As a result, the values required for CY

decrease as m increases. When m ¼ 5, a value for CY

of zero is associated with strain hardening at a
higher level than observed. For this reason, we did
not explore values of m greater than 5, as the pre-
dicted strain hardening would then be unreasonably
high.

In Figure 8, we show the development of R with
time as observed experimentally and as predicted
with the finite element model of Figure 5 for values
of m up to 5. Only times of 5 s or more are included,
as at shorter times, the strains were too small to give
good accuracy for the imaging method used. The
upper limit of the time axis was set by the range of
strain (�0.35) covered experimentally. For values of
m between 0 and 3, the deformation predicted by
the model changed unsystematically between stable
and unstable, with the latter associated with highly
localized strain (necking) at the specimen center. As
is well established,13–15 the strain rate sensitivity,
essentially the quantity g in eq. (24), controls the
stability of deformation, with high values tending to
suppress necking. High values of m are associated

with high values of g, and this is consistent with the
stable deformation predicted for m ¼ 4 and m ¼ 5.
However, lower values, m ¼ 0 and m ¼ 2, are associ-
ated with stable deformations whereas m ¼ 1 and
m ¼ 3 are associated with necks beginning to form.
In this range of m, small changes in the input data
could switch the behavior between stable and unsta-
ble regimes. Figure 9 shows the states of deforma-
tion for values of m of 0, 1, 3, and 5. The general
picture that emerged was that m ¼ 4 and m ¼ 5 gave
predictions of deformation that were reasonably con-
sistent with the experiments, whereas for the lower
values, the deformation fields were quantitatively or
qualitatively incorrect. This showed that the accuracy
of the stress–strain curve was one of a number of con-
siderations that are relevant in the assessment of a
constitutive model. The accuracy of the strain rate
sensitivity is in some cases more important, as it con-
trols the stability of the deformation.

Some physical interpretation of the constitutive
model was possible. It can be envisaged as compris-
ing two parallel arms, one consisting of an Eyring
model in series with an Ogden model (the combina-
tion arm) and the other consisting of a single Ogden
model (the hyperelastic arm). The hyperelastic arm
resembles the entropic component that is frequently
included in models of polymers, as pioneered by
Haward and Thackray,16 and is associated with
strain hardening at higher strains. In this study, we
observed that the Eyring process in the combination
arm of the model could also be a source of strain
hardening via the flow rule when the exponent m
exceeded zero. This was equivalent to a fall in the
activation volume associated with deformation along
the stretch direction. The idea that strain hardening
may be both entropic in origin and also the result of
falling activation volume has been suggested previ-
ously, and models have been proposed in which the
activation volume falls as a function of strain.17–19

However, a simple decrease in activation volume

Figure 7 Model stress–strain curves in comparison with
the observed curve for a strain rate of 0.018 s�1.

Figure 8 Evolution of the strain ratio (R) with time.
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would affect the plastic strain rate in all directions
indiscriminately; this would be unrealistic for the
prediction of plastic strain rates in an arbitrary direc-
tion in an oriented polymer. This approach, in which

the effect is included via the flow rule, is better justi-
fied. It is equivalent to the introduction of an activa-
tion volume that is tensorlike rather than a single
value.

Figure 9 Strain field (LE ¼ maximum principal strain) at 9.7 s for m ¼ (a) 0, (b) 1, (c) 3, and (d) 5. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]
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CONCLUSIONS

The flow rule introduced previously for modeling
the compressive behavior of UHMWPE4 was applied
to the tensile behavior of the same material. It
showed implications for the strain rate dependence
of the stress, which were confirmed experimentally.
This took the form of the dependence of the strain
rate sensitivity on the strain; the experimental obser-
vations led to a power-law exponent m in the flow
rule of approximately 5. In experiments involving
inhomogeneous tensile strain fields, the plastic strain
rates in the axial and transverse directions were pre-
dicted to be related in a way that depended on m.
Observations of strain in these circumstances
showed that the ratio of perpendicular strains was
consistent with a value of m of 5.

As shown by both this study and a previous study
on compressive behavior,4 the analysis and observa-
tion of nonuniaxial strain fields were essential steps
in the evaluation of constitutive models for
UHMWPE. Generally, valid constitutive models are
only possible when the strain-induced anisotropy is
taken into account.
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